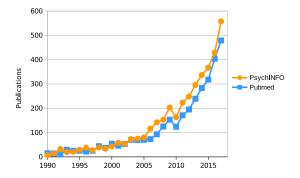
Analyzing Intensive Longitudinal Data (with DSEM)

N. K. Schuurman


Tilburg University

EAWOP May 2019

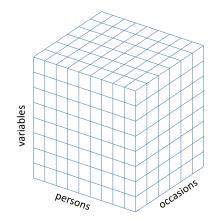
イロン イヨン イヨン トヨ

1/149

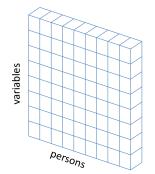
Times are changing

Annual number of publications with "daily diary", "experience sampling", "ambulatory assessment", or "ecological momentary assessment" in the title, abstract, or keywords. Adapted from Hamaker & Wichers (2017).

Overview


- Intensive Longitudinal Data
- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress

Overview

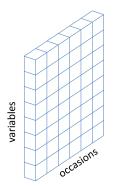

Intensive Longitudinal Data

- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress

Cattell's data box

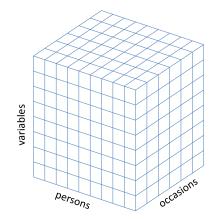
Cross-sectional research: N is large, T=1

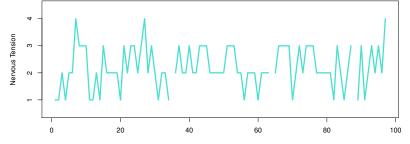
Cross-sectional research: N is large, T=1


Panel research: N is large, T is small

Persons occasions

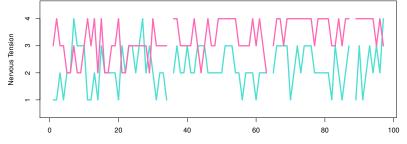
Panel research: N is large, T is small


≣ ৩৭ে 9/149 Time series data: N=1 and T is large

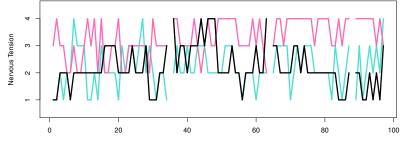

Time series data: N=1 and T is large

<ロト <回ト <三ト <三ト <三ト ミークへで 11/149

Intensive Longitudinal Data

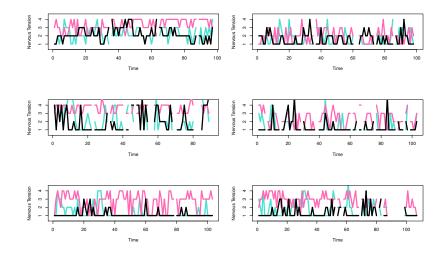

< □ > < @ > < 클 > < 클 > · 클 · 의익은 12 / 149 **Time Series**

Time


< □ > < @ > < 클 > < 클 > · 클 · 의익() 13 / 149

Multivariate Time Series

Time


Multivariate Time Series

Time

<□> <圕> < 클> < 클> < 클> ▷ 월 ♡ < ♡ < ♡ < ♡ < ○</p>

Intensive Longitudinal Data

□ > < @ > < E > < E > E ∽ Q (~ 16 / 149

Collecting Intensive Longitudinal Data

Ambulatory Assessment or Ecological Momentary Assessment

Experience Sampling, Daily diary, Tracking apps...See work by Timothy Trull and Ulrich Ebner-PriemerSociety of Ambulatory AssessmentLifedata, Ethica, Movisens, Expimetrics, ...

Collecting Daily Diary Data

usually once at the end of the a day

)		
	How are	you feelin	g today?		0
AMPED	GOOD	i Doin' fine	TT MEH	PISSED	

Collecting Daily Diary Data

usually once at the end of the a day

Me	
·_· HOE GOK IS NI?	Home Veelgestelde vragen Weetjes Tips & Links Wie zijn wij Nieuws Contact
Ное	gek is Nederland?
AMPED GOOD DOIN' FINI	E MEH PISSED

Collecting Experience Sampling Data

Alert people randomly throughout the day

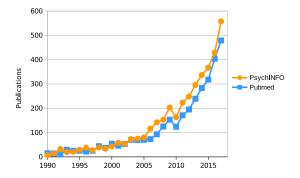
Tamlin Conner: https://www.youtube.com/watch?y=nQBBVp9vBIQ

19/149

Collection: Monitoring or Tracking Technology

Collection: Monitoring or Tracking Technology

Collection: Monitoring or Tracking Technology



Collection: Ambulatory/Ecological Momentary Assessment

Advantages

- limited recall bias
- high ecological validity
- allows for consistent monotoring, with new possibilities for feedback and intervention
- window into the dynamics of processes

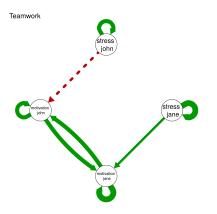
Times are changing

Annual number of publications with "daily diary", "experience sampling", "ambulatory assessment", or "ecological momentary assessment" in the title, abstract, or keywords. Adapted from Hamaker & Wichers (2017).

How to Analyze This Stuff?

- Fairly young methodological area
- Not part of basic curriculum
- Huge development
- Already many options: discrete or continuous variables, latent variables, linear models, nonlinear models, and so on (Hamaker et al. 2015).

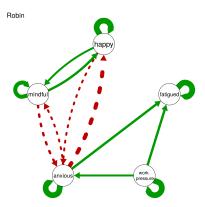
Dynamic SEM "SEM" (in Mplus v8)

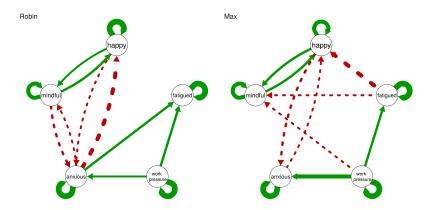

- Designed for modeling intensive longitudinally measured continuous, normal variables
- N=1 or n=Many (via multilevel modeling; all parameters can be allowed to vary across persons)
- Similar to the State Space modeling framework (but even more general!)
- Allows for specifying many different time series models, including classic AR, ARMA, ARIMA models
- Explicit separation of within/between (using the multilevel context)
- Allows for adding predictors or outcome variables on between level and the within level (with a one-step-procedure)
- Can deal with categorical items via a probit link function (I believe dynamic IRT models are possible)
- Bayesian estimation

Overview

Intensive Longitudinal Data

- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress


Simple models: Autoregressive Modeling


Why?

- Simple model (linear regression relationships, continuous variables)
- Appealing interpretation
- Basis for or related to many other dynamic models
- Can use coefficients to make pretty dynamic networks
- Hence, popular

Intermezzo: Dynamic Networks/Intraindividual Networks

Intermezzo: Dynamic Networks/Intraindividual Networks

<ロト < 回 ト < 巨 ト < 巨 ト ミ う へ () 28 / 149 Intermezzo: Dynamic Networks/Intraindividual Networks

- Visualize how psychological variables are associated with themselves, and each other over time
- Conceptual models, or based on statistical estimates from (intensive longitudinal) data
- Currently, such statistical estimates are typically based on Vector Autoregressive Models

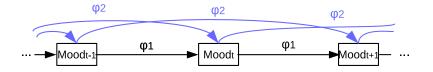
Read more: Borsboom (2017), Bringmann et al (2013), Cramer et al (2010).

Autoregressive Modeling: The Basic Idea

⁶⁶The best predictor of future behavior is past behavior⁹⁹

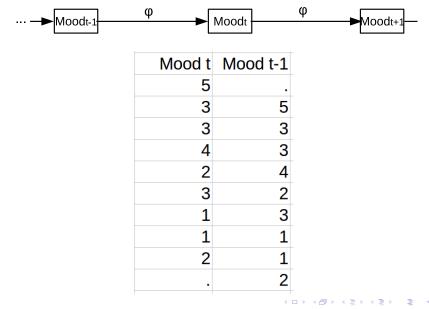
The N=1 Univariate Model (AR Model)

- Model for the time series of a specific person (N=1, T=many)
- Variable is regressed on itself at (a) previous occasion(s)
- AR(1) model: on the nearest previous occasion

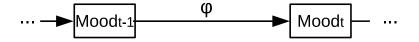


The N=1 Univariate Model (AR Model)

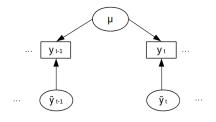
AR(1) model: on the nearest previous occasion


 AR(2) model: on the nearest previous occasion, and the occasion before that

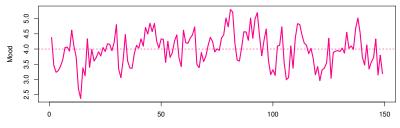
 AR(3) model: on the nearest previous occasion, and the occasion before that, and the one before that


[🕨] etc

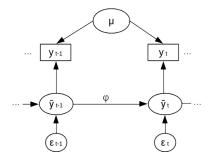
The N=1 AR(1) Model



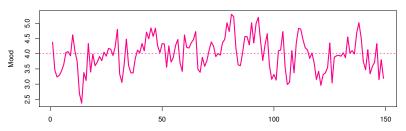
33 / 149


The N=1 AR(1) Model

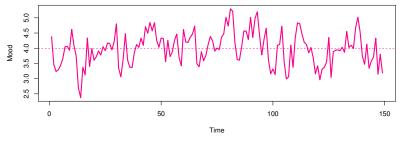
- What does the process look like?
- What about model assumptions?



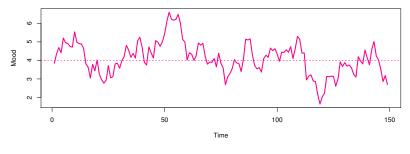
$$y_t = \mu + \tilde{y}_t$$


Time

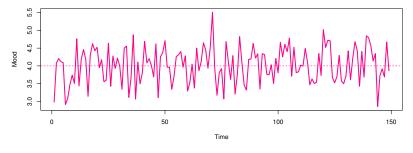
<ロト < 回 ト < 巨 ト < 巨 ト ミ の < で 35 / 149


 $y_t = \mu + \tilde{y}_t$ $\tilde{y}_t = \phi \tilde{y}_{t-1} + \epsilon_t$

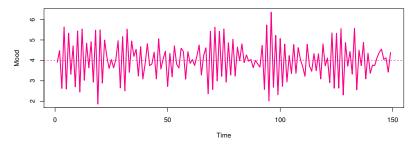
$$\epsilon_t \sim \textit{Normal}\left(0, \sigma^2\right)$$


୬ ଏ (୦ 36 / 149

► In the AR(1) model φ lies between -1 and 1


AR(1) with $\phi = .5$

► In the AR(1) model φ lies between -1 and 1


AR(1) with $\phi = .8$

► In the AR(1) model φ lies between -1 and 1

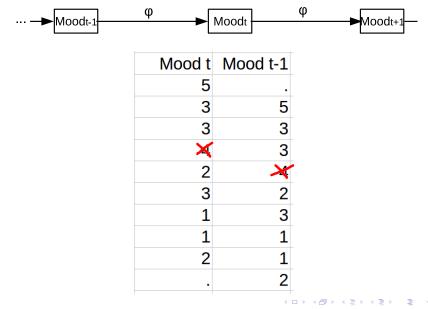
AR(1) with $\phi = 0$

► In the AR(1) model φ lies between -1 and 1

AR(1) with $\phi = -8$

The N=1 AR(1) Model: Psychological Practice?

- The autoregressive effect as resilience
- emotional inertia positively related with psychological maladjustment (Kuppens et al. 2011)
- emotional inertia positively related with rumination and depression severity (Koval, 2012)
- emotional inertia predicts the onset of depressive disorder in adolescence (Kuppens et al. 2015)


The N=1 AR(1) Model: Software?

	N=1	multilevel
uni- variate	 any regression software arima in R State Space Modeling software Openmx Bayesian modeling software (Including WinBUGS, STAN, JAGS and Mplus v8!) 	
some- what multi- variate multi- variate		

The N=1 AR(1) Model: Software?

	N=1	multilevel
uni- variate	 any regression software arima in R State Space Modeling software Openmx 	
	- Bayesian modeling software (Including WinBUGS, STAN, JAGS and Mplus v8!)	
some- what multi- variate		
multi- variate		

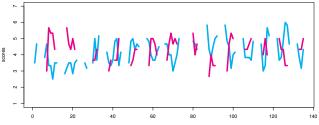
The N=1 AR(1) Model

44 / 149

The N=1 AR(1) Model: DEMO

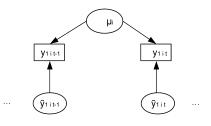
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview

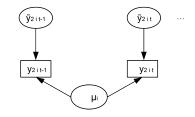

Intensive Longitudinal Data

- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress

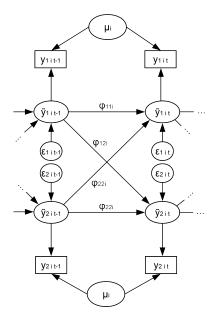
VAR modeling: Example


Competence and Exhaustion of people diagnosed with burnout

- Experience Sampling study by Sonnenschein et al. (2006)
- 54 persons diagnosed with burnout
- On average 80 repeated measures for exhaustion and 40 for feeling competent

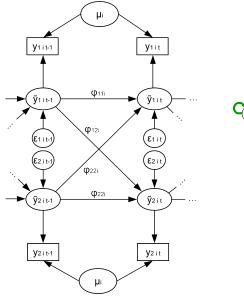


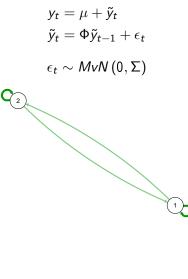
Time


Bivariate autoregressive model

$$y_t = \mu + \tilde{y}_t$$

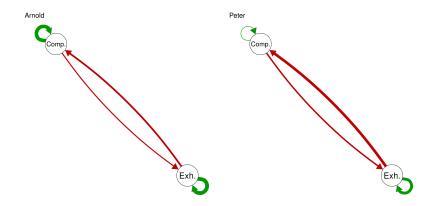
Bivariate autoregressive model

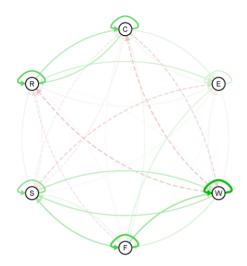



- $y_t = \mu + \tilde{y}_t$ $\tilde{y}_t = \Phi \tilde{y}_{t-1} + \epsilon_t$
- $\epsilon_{t} \sim MvN(0,\Sigma)$

ヘロト ヘ週ト ヘヨト ヘヨト

≣ ∽ < ⊂ 49 / 149


Bivariate autoregressive model

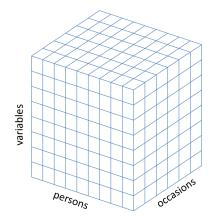

イロン イヨン イヨン トヨ

Vector Autoregressive Modeling: Multiple Variables

Based on results from Schuurman et al. 2016

Dynamic Network Examples

C=Cheerful; E=Event; W=Worried; F=Fear; S=Sad; R=Relaxed. Image from Bringmann et al. (2013)


э

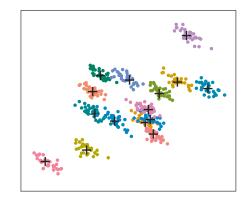
The N=1 VAR(1) Model: Software?

	N=1	multilevel
uni- variate	- any regression software	
	- arima in R	
	- State Space Modeling software	
	- Openmx	
	- Bayesian modeling software	
some-	- any regression software	
what	- VARS package in R	
multi-	- State Space Modeling Software	
variate	- Bayesian software	
multi- variate	- State Space Modeling Software	
	(mkfm6; Ox; fkf, dlm, KFAS,	
	and MARSS in R)	
	- Bayesian software (Winbugs,	
	Openbugs, JAGS, STAN, Mplus v8)	

The N=1 VAR(1) Model: DEMO

Intensive Longitudinal Data: N=many, t=many

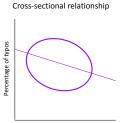
Overview


- Intensive Longitudinal Data
- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress

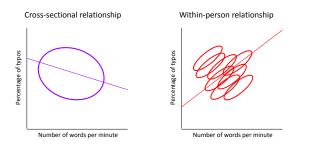
Multiple subjects: Separating Within-variance from Between-variance

- Whatever method you end up with....
- Separate stable between person differences from within person differences.
- and take into account that there may be between person differences in the within person dynamics.

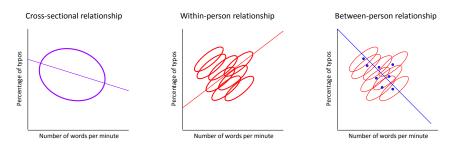
■ ● ■ つへで 58/149


caffeine intake

Taken from Schuurman (2016)


concentration problems

59/149


<ロト < 部 ト < 注 ト < 注 ト 注 の Q (C 60 / 149

Number of words per minute

60/149

Taken from Hamaker (2012).

< □ > < @ > < 클 > < 클 > < 클 > 클 · ∽ Q ↔ 60 / 149 Separating within person differences from stable between person differences:

Without Repeated Measurements

- Design measurements such that they measure only within person variation or only between person variation
- Filter out between person variation using control variables that reflect these between person differences
- Make use of random assignment: "[...] note that, in true experimental designs, between-group (treatment) differences on the dependent variables appear as interindividual differences in the data, but that these differences actually imply intraindividual change" (Baltes, Reese and Nesselroade, 1977, p.101-103)

Separating within person differences from stable between person differences:

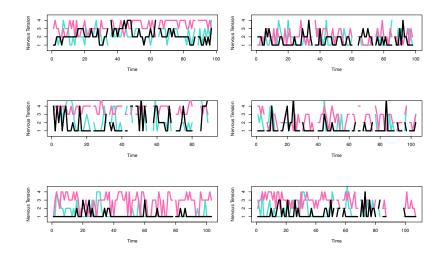
Without Repeated Measurements

- Design measurements such that they measure only within person variation or only between person variation
- Filter out between person variation using control variables that reflect these between person differences
- Make use of random assignment: "[...] note that, in true experimental designs, between-group (treatment) differences on the dependent variables appear as interindividual differences in the data, but that these differences actually imply intraindividual change" (Baltes, Reese and Nesselroade, 1977, p.101-103)

With Repeated Measurements

- ▶ Go for n=1. Then there are no between person differences
- Separate the two during the analyses, making use of techniques such as within person centering or multilevel modeling

Within-person processes may differ from person to person


Interindividual differences in within person variation over time / processes

62/149

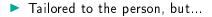
Taken from Hamaker and Grasman (2014).

Within-person processes may differ from person to person

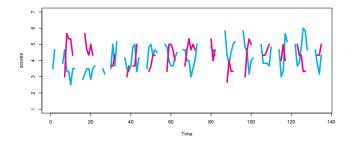
□ > < @ > < \Rightarrow <

Separate within and between, and account for differences in people's processes

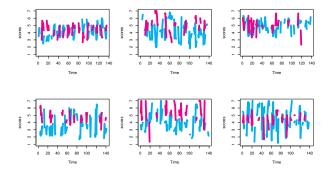
In conclusion: To study within-person processes we need

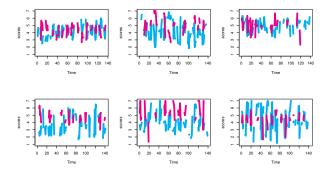

- to decompose observed variance into within and between person variance
- > to consider individual differences in within-person dynamics
- -> (intensive) longitudinal data

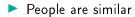
Overview

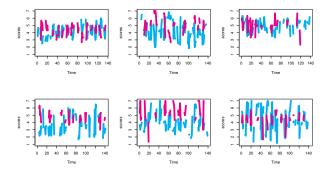

- Intensive Longitudinal Data
- Single Subject Univariate Autoregressive Modeling
- Single Subject Multivariate (Vector) Autoregressive Modeling
- Multiple Subjects: Separating within and between person variance
- Multiple Subjects: Multilevel Autoregressive Modeling
- Caveats/Advanced Issues/State of the Art/Work in Progress

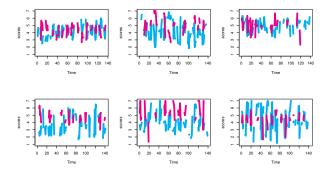
N=1 Models...

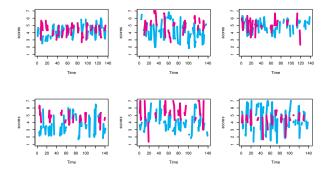



N=1 Models...

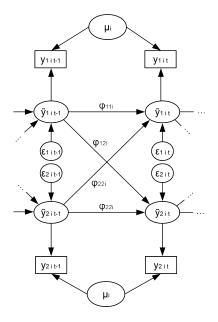



- Tailored to the person, but...
- difficult to generalize
- need many repeated measures


Because...



- People are similar
- People are different

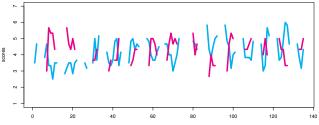


- People are similar
- People are different
- Easier to generalize

- People are similar
- People are different
- Easier to generalize
- Balance T with N

Bivariate multilevel autoregressive model

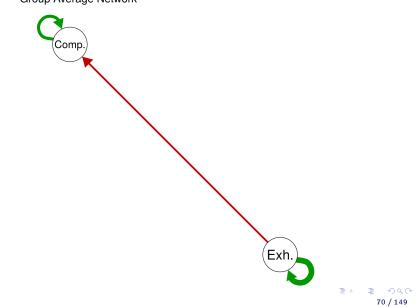
$$y_{it} = \mu_i + \tilde{y}_{it}$$
$$\tilde{y}_{it} = \Phi_i \tilde{y}_{it-1} + \epsilon_{it}$$


 $\epsilon_{it} \sim M v N \left(0, \Sigma
ight)$ $\mu_i, \Phi_i \sim M v N \left(\gamma, \Psi
ight)$

> < □ > < @ > < 글 > < 글 > 로 ∽ < ↔ 68 / 149

Multilevel VAR modeling: Example

Competence and Exhaustion of people diagnosed with burnout


- Experience Sampling study by Sonnenschein et al. (2006)
- 54 persons diagnosed with burnout
- On average 80 repeated measures for exhaustion and 40 for feeling competent

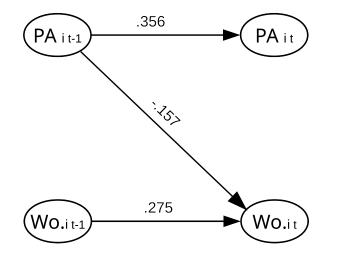
Time

Average Within-person Competence and Exhaustion network

Group Average Network

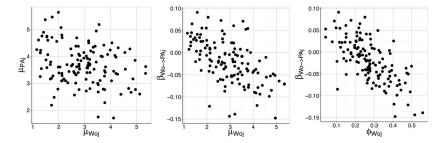
Worrying and PA regulation

- Experience Sampling study by Geschwind et al. (2011)
- 129 persons, about 45 measures per person for PA and Worrying scores.


Worrying and PA regulation

- Experience Sampling study by Geschwind et al. (2011)
- 129 persons, about 45 measures per person for PA and Worrying scores.

- Worrying may be adaptive for regulating emotions (including PA) or maladaptive
- A strong autoregression coefficient for worrying may indicate maladaptive worrying
- We explore the reciprocal effects of worrying and PA on each other
- and the associations between the person-specific autoregressive effects, cross-lagged effects, and mean levels.

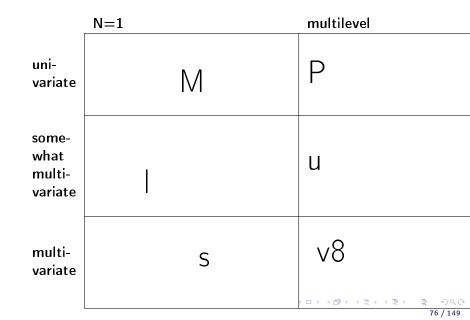

Worrying and PA

Average within-person effects

Worrying and PA

Between-person Associations between person-specific coefficients

Read more: Schuurman, Grasman & Hamaker (2016)


In sum: Multilevel VAR

- Good first step in exploring how variables affect themselves and each other over a time lag
- Get an impression of the dynamics involved
- Take into account individual differences, and (multilevel) model them!

(Multilevel V)AR: Software

	N=1	multilevel
uni- variate	 any regression software arima in R State Space Modeling software Openmx Bayesian modeling software 	- any multilevel software - MLvar package in R - Bayesian modeling software
some- what multi- variate	 any regression software VARS package in R State Space Modeling Software Openmx Bayesian modeling software 	- any multilevel software - MLVar package in R - Bayesian modeling software
multi- variate	 State Space Modeling Software (mkfm6; Ox; fkf, dlm, KFAS, and MARSS in R) Bayesian software (Winbugs, Openbugs, JAGS, STAN) 	- Bayesian software (Winbugs, Openbugs, JAGS, STAN)

(Multilevel V)AR: Software

DSEM in Mplus v8

- Designed for continuous, normal variables
- N=1 or multilevel (all parameters can be allowed to vary across persons
- Explicit separation of within/between (so a multilevel context)
- Similar to the State Space modeling framework (but even more general!).
- Allows for specifying many different time series models, including classic AR, ARMA, ARIMA models
- Allows for adding predictors or outcome variables on between level and the within level in one step
- Can deal with categorical variables via a probit link function (I believe dynamic IRT models are possible)
- Bayesian estimation

DSEM Software

Mplus v8

- Specifically developed for DSEM
- -> tailored to DSEM specific issues, time saving features
- ► -> fast, stable
- -> less flexible
- Not free (aside from student version), not open source
- Support from Mplus
- Probably more user friendly

Bugs, Stan, Jags

- Not specifically developed for DSEM, very general
- -> dealing with specific DSEM issues requires (much) more work
- -> less fast, can be less stable (depending on your implementation)
- -> more flexible
- 🕨 Free, open source
- Tips/advice everywhere, but you are basically on your own

イロト 不得 トイヨト イヨト 一日

Probably less user friendly

Overview

Dynamic Networks

Intensive Longitudinal Data

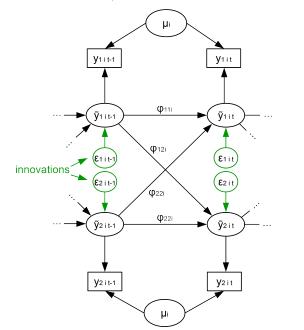
Univariate Autoregressive Modeling (N=1)

Multivariate Autoregressive Modeling (N=1)

Multilevel Autoregressive Modeling (N=Many)

Caveats/Advanced Issues/State of the Art/Work in Progress

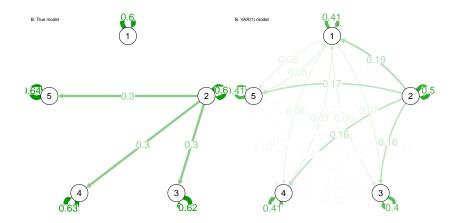
Caveats/Advanced Issues/State of the Art/Work in Progress

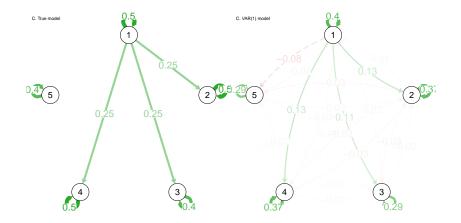

- Measurement error
- Standardizing coefficients
- Non-stationarity
- Non-equidistant measurements/Differential Equations/Continuous Time Modeling
- Missing data (Pay attention to what your software is doing listwise deletion makes no sense for these data)
- Variable selection/model selection
- Mediation, Interventions and Causality
- Modeling processes on that take place at different time scales
- Linear vs Non-linear models
- Categorical models (multilevel) markov models
- Models with other distributional assumptions
- Clustering rather than multilevel (e.g., Gimme by Gates & Molenaar)

Two limitations of many AR applications

(Multilevel) VAR models are getting applied more frequently in psychology, but...

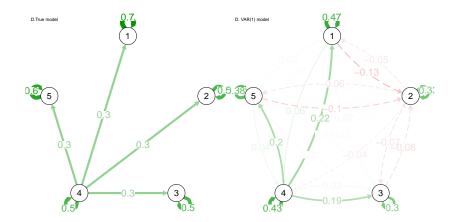
- The model usually disregards measurement error
- The multilevel models usually disregard that residual variances may be different from person to person


Innovations =/= Measurement errors

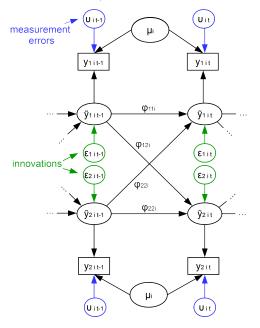

 $y_{it} = \mu_i + \tilde{y}_{it}$ $\tilde{y}_{it} = \Phi_i \tilde{y}_{it-1} + \epsilon_{it}$

 $\epsilon_{it} \sim M v N \left(0, \Sigma
ight)$ $\mu_i, \Phi_i \sim M v N \left(\gamma, \Psi
ight)$

Disregarding Measurement Error...

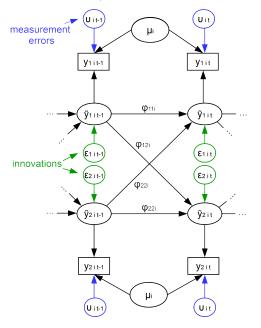


Disregarding Measurement Error...


<ロト < 回 ト < 巨 ト < 巨 ト ミ うへで 84 / 149

Disregarding Measurement Error...

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへの 85 / 149


Innovations =/= Measurement errors

- $y_{it} = \mu_i + \tilde{y}_{it} + v_{it}$ $\tilde{y}_{it} = \Phi_i \tilde{y}_{it-1} + \epsilon_{it}$
- $$\begin{split} v_{it} &\sim \textit{MvN} (0, \Omega) \\ \epsilon_{it} &\sim \textit{MvN} (0, \Sigma) \\ \mu_i, \Phi_i &\sim \textit{MvN} (\gamma, \Psi) \end{split}$$

86 / 149

Innovations =/= Measurement errors

- $y_{it} = \mu_i + \tilde{y}_{it} + \upsilon_{it}$ $\tilde{y}_{it} = \Phi_i \tilde{y}_{it-1} + \epsilon_{it}$
- $egin{aligned} & \upsilon_{it} \sim \mathit{MvN}\left(0, \Omega_{i}
 ight) \ & \epsilon_{it} \sim \mathit{MvN}\left(0, \Sigma_{i}
 ight) \ & \mu_{i}, \Phi_{i} \sim \mathit{MvN}\left(\gamma, \Psi
 ight) \end{aligned}$

Measurement error variance may be different for each person!

イロン イロン イヨン イヨン 三日

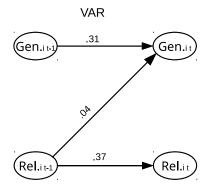
87 / 149

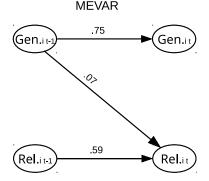
Random innovation variances and measurement error variances

Reasons to assume individual differences for these variances:

- individuals may differ with respect to the variability in exposure to external factors
- individuals may differ with respect to their reactivity to external influences (see reward experience and stress sensitivity research)

Empirical Example: General PA and Relationship PA

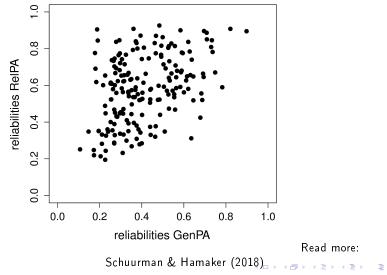



Multilevel VAR modeling: Example

Positive affect of women in a heterosexual relationship

- Data from study by Ferrer, Steele, and Hsieh (2012)
- 190 women filled out a diary every evening
- about 60 to 90 repeated measures on daily General Positive Affect and Relationship Positive Affect

Empirical Example: General PA and Relationship PA


 $\begin{array}{l} \text{mean } \phi_{geni}: \ .31 \ (.28, \ .34) \\ \text{mean } \phi_{reli}: \ .37 \ (.34, \ .40) \\ \text{mean } \phi_{gen->reli}: \ .04 \ (.02, \ .07) \\ \text{mean } \phi_{rel->geni}: \ .02 \ (.00, \ .04) \end{array}$

mean ϕ_{geni} :.75 (.69, .80) mean ϕ_{reli} : .59 (.53, .64) mean $\phi_{gen->reli}$: -.03 (-.07, .00) mean $\phi_{rel->geni}$: .07 (.02, .13)

Person-specific reliabilities

- Unique measurement error variances per person (and variable) also implies unique reliabilities!
- For each person: Calculate the proportion of that person's total variance and the part of the variance which is not due to measurement errors

Person-specific reliabilities

93 / 149

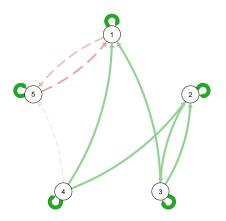
Comparing cross-lagged parameters

To compare the strength of the cross-lagged effects, the coefficients should be standardized. However, Standardization in multilevel models is a **tricky issue**.

Comparing cross-lagged parameters

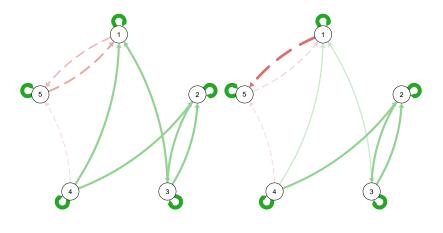
To compare the strength of the cross-lagged effects, the coefficients should be standardized.

イロン イヨン イヨン トヨン

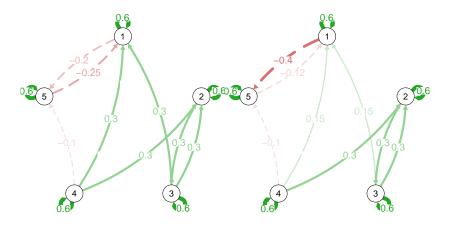

94 / 149

However, Standardization in multilevel models is a **tricky issue**. Four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)


Why standardized coefficients

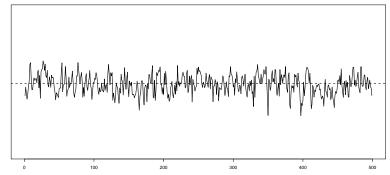
Unstandardized coefficients are sensitive to the measurement unit


Why standardized coefficients

Unstandardized coefficients are sensitive to the measurement unit (variable 1 multiplied by 2)

Why standardized coefficients

Unstandardized coefficients are sensitive to the measurement unit (variable 1 multiplied by 2)

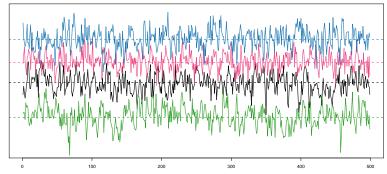

$$\beta = b \frac{\sigma_x}{\sigma_y}$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < C 98 / 149

scores

$$\beta = b \frac{\sigma_x}{\sigma_y}$$

Different variances in the multilevel model: within-person, between-person, grand


98 / 149

周下 不正

scores

$$\beta = b \frac{\sigma_x}{\sigma_y}$$

Different variances in the multilevel model: within-person, between-person, grand

99 / 149

Within-person, between-person or grand?

Always standardize on the level on which the predictor explains variance.

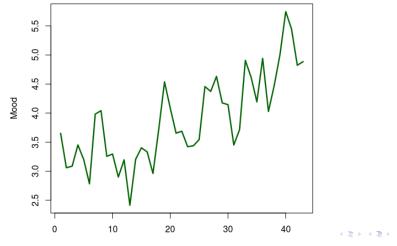
Within-person, between-person or grand?

- Always standardize on the level on which the predictor explains variance.
- The cross-lagged coefficients are about within person effects, and explain within-unit variance.

Within-person, between-person or grand?

- Always standardize on the level on which the predictor explains variance.
- The cross-lagged coefficients are about within person effects, and explain within-unit variance.
- Different individuals have different parameters, take this into account in the standardization!

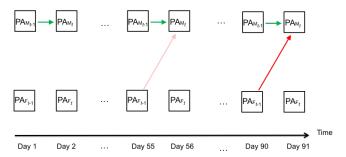
Within-person, between-person or grand?


- Always standardize on the level on which the predictor explains variance.
- The cross-lagged coefficients are about within person effects, and explain within-unit variance.
- Different individuals have different parameters, take this into account in the standardization!
- So: Standardize each person's coefficients, using within person standardization.

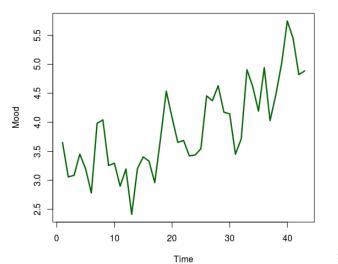
Read more: Schuurman, Ferrer, Boer-Sonnenschein & Hamaker (2016)

Mplus standardized results

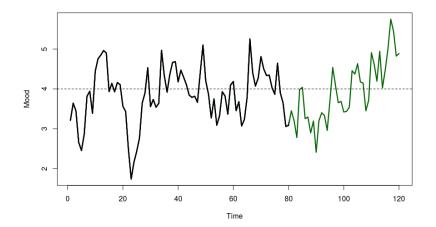
STDYX Standardization	Posterior One-Tailed 95% C.I.					
	Estimate	S.D.		Lower 2.5%		Significance
Within-Level Standardized Estimates Averaged Over Clusters						
P_PP DAYPA ON DAYPA&1	0.335	0.011	0.000	0.312	0.358	*
P_PN DAYPA ON DAYNA&1	0.034	0.013	0.006	0.008	0.059	*
P_NP DAYNA ON DAYPA&1	0.038	0.011	0.000	0.017	0.059	*
P_NN DAYNA ON DAYNA&1	0.370	0.012	0.000	0.347	0.394	*
DAYNA WITH DAYPA	-0.194	0.010	0.000	-0.213	-0.175	*
Residual Variances						
DAY PA DAY NA	0.816 0.792	0.008 0.008	0.000 0.000	0.799 0.775	0.832 0.808	*


Parameters must not change over time (means, regression coefficients, variances, and so on).

Time


102 / 149

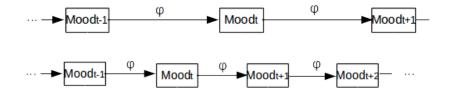
Time Varying VAR Read more: Bringmann, Hamaker, Vigo, Aubert, Borsboom, & Tuerlinckx (2016; only n=1)


More sudden changes?: Regime switching models, change point analysis, Threshold-AR models,... Read more: de Haan-Rietdijk et al. (2016), Hamaker, Grasman & Kamphuis (2016).

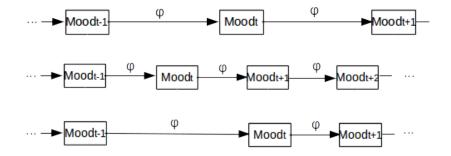
Trend...?

■ ► ■ つへで 104 / 149

Trend...? No! Autoregressive process.



<ロト < 合ト < 言ト < 言ト < 言ト こ のへへ 105 / 149



<ロト < 回 ト < 巨 ト < 巨 ト ミ うへで 106 / 149

<ロト < 回 ト < 目 ト < 目 ト ミ うへで 107 / 149

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Different measurement spacing, Different results

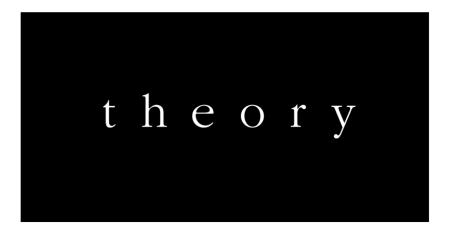
Image made by Oisin Ryan (Utrecht University)

Discrete Time vs Continuous Time

- Mplus possible to specify time grid and will add in missing observations to equally space measurements
- Continuous time models can directly take the length of the time intervals into account
- Based on differential equations

Recent developments:

イロン イヨン イヨン トヨン


109 / 149

- ctsem (Driver, Voelkle and Oud)
- DynR (Ou, Hunter and Chow)
- BOUM (Oravecz, Tuerlinckx and Vanderkerckhove)

Caveats/Advanced Issues/State of the Art/Work in Progress

- Measurement error
- Standardizing coefficients
- Non-stationarity
- Non-equidistant measurements/Differential Equations/Continuous Time Modeling
- Missing data (Pay attention to what your software is doing listwise deletion makes no sense for these data)
- Variable selection/model selection
- Mediation, Interventions and Causality
- Modeling processes on that take place at different time scales
- Linear vs Non-linear models
- Categorical models (multilevel) markov models
- Models with other distributional assumptions
- Clustering rather than multilevel (e.g., Gimme by Gates & Molenaar)

Going forward...

<ロ> < 回> < 回> < 目> < 目> < 目> 目 のへの 111/149

Resources for joining in

- Workshop slides and references here
- Practice exercises/code for Mplus or R + JAGS here
- Mplus DSEM workshops and webinars here
- Ellen Hamaker, Laura Bringmann, Rebecca Kuiper, Oisin Ryan and me also developed a 5-day course.
- At Utrecht University in august, winter course is in the making.

112 / 149

Applications Overview

1. Multilevel VAR model for PA and NA

- 2. Multilevel VAR model with mediation
- ▶ 3. Intervention Study

Data: Daily measurements affect

Data come from the **COGITO** study of the MPI in Berlin; goal is to study aging using a younger and older sample. Analyses here are

based on Hamaker et al. (2018, Multivariate Behavioral Research).

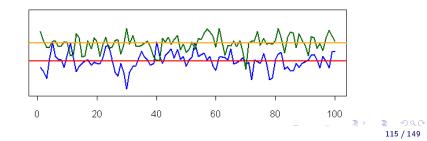
Data: Daily measurements affect

Data come from the **COGITO** study of the MPI in Berlin; goal is to study aging using a younger and older sample. Analyses here are

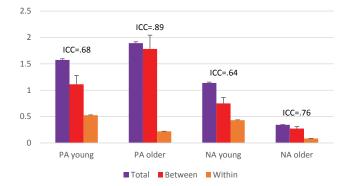
based on Hamaker et al. (2018, Multivariate Behavioral Research). Characteristics of the **younger** and **older sample**:

- aged 20-31; aged 65-80
- ▶ 101 individuals; 103 individuals
- about 100 daily measurements of positive affect (PA) and negative affect (NA)

Decomposition

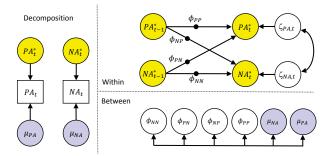

Decomposition into a between part and a within part $PA_{it} = \mu_{PA,i} + PA_{it}^{(w)}$ $NA_{it} = \mu_{NA,i} + NA_{it}^{(w)}$

Decomposition


Decomposition into a between part and a within part $PA_{it} = \mu_{PA,i} + PA_{it}^{(w)}$ $NA_{it} = \mu_{NA,i} + NA_{it}^{(w)}$

where

- ▶ $\mu_{PA,i}$ and $\mu_{NA,i}$ are the individual's **means** on PA and NA (i.e., baseline, trait, or equilibrium scores) ⇒ between-person part
- ▶ $PA_{it}^{(w)}$ and $NA_{it}^{(w)}$ are the **within-person centered** (cluster-mean centered) scores \Rightarrow within-person part



Total, between-, and within-person variance

 $\frac{|\text{Intraclass correlation}:}{\sigma_{between}^2 + \sigma_{within}^2} = \frac{\sigma_{between}^2}{\sigma_{total}^2}$

Bivariate model: Multilevel vector AR(1) model

46 / 58

Lagged within-person model:

$$PA_{it}^{(w)} = \phi_{PP,i} PA_{i,t-1}^{(w)} + \phi_{PN,i} NA_{i,t-1}^{(w)} + \zeta_{PA,it}$$
$$NA_{it}^{(w)} = \phi_{NN,i} NA_{i,t-1}^{(w)} + \phi_{NP,i} PA_{i,t-1}^{(w)} + \zeta_{NA,it}$$

where

φ_{PP,i} is the autoregressive parameter for PA (i.e., inertia, carry-over)
 φ_{NN,i} is the autoregressive parameter for NA (i.e., inertia, carry-over)

Lagged within-person model:

$$PA_{it}^{(w)} = \phi_{PP,i}PA_{i,t-1}^{(w)} + \phi_{PN,i}NA_{i,t-1}^{(w)} + \zeta_{PA,it}$$
$$NA_{it}^{(w)} = \phi_{NN,i}NA_{i,t-1}^{(w)} + \phi_{NP,i}PA_{i,t-1}^{(w)} + \zeta_{NA,it}$$

where

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the cross-lagged parameter for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the cross-lagged parameter for PA to NA (i.e., spill-over)

Lagged within-person model:

$$PA_{it}^{(w)} = \phi_{PP,i} PA_{i,t-1}^{(w)} + \phi_{PN,i} NA_{i,t-1}^{(w)} + \zeta_{PA,it}$$
$$NA_{it}^{(w)} = \phi_{NN,i} NA_{i,t-1}^{(w)} + \phi_{NP,i} PA_{i,t-1}^{(w)} + \zeta_{NA,it}$$

where

φ_{PP,i} is the autoregressive parameter for PA (i.e., inertia, carry-over)
 φ_{NN,i} is the autoregressive parameter for NA (i.e., inertia, carry-over)
 φ_{PN,i} is the cross-lagged parameter for NA to PA (i.e., spill-over)
 φ_{NP,i} is the cross-lagged parameter for PA to NA (i.e., spill-over)
 ζ_{PA,it} is the innovation for PA (residual, disturbance, dynamic error)
 ζ_{NA,it} is the innovation for NA (residual, disturbance, dynamic error)

Lagged within-person model:

$$PA_{it}^{(w)} = \phi_{PP,i} PA_{i,t-1}^{(w)} + \phi_{PN,i} NA_{i,t-1}^{(w)} + \zeta_{PA,it}$$
$$NA_{it}^{(w)} = \phi_{NN,i} NA_{i,t-1}^{(w)} + \phi_{NP,i} PA_{i,t-1}^{(w)} + \zeta_{NA,it}$$

where

φ_{PP,i} is the autoregressive parameter for PA (i.e., inertia, carry-over)
 φ_{NN,i} is the autoregressive parameter for NA (i.e., inertia, carry-over)
 φ_{PN,i} is the cross-lagged parameter for NA to PA (i.e., spill-over)
 φ_{NP,i} is the cross-lagged parameter for PA to NA (i.e., spill-over)
 ζ_{PA,it} is the innovation for PA (residual, disturbance, dynamic error)
 ζ_{NA,it} is the innovation for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and covariance:

$$\begin{bmatrix} \zeta_{PA,it} \\ \zeta_{NA,it} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \theta_{11} \\ \theta_{21} & \theta_{22} \end{bmatrix} \end{bmatrix}$$

Between-person level model

Between level: fixed and random effects

$$\mu_{PA,i} = \gamma_P + u_{P,i}$$

$$\mu_{NA,i} = \gamma_N + u_{N,i}$$

$$\phi_{PP,i} = \gamma_{PP} + u_{PP,i}$$

$$\phi_{PN,i} = \gamma_{PN} + u_{PN,i}$$

$$\phi_{NP,i} = \gamma_{NP} + u_{NP,i}$$

$$\phi_{NN,i} = \gamma_{NN} + u_{NN,i}$$

The *u*'s are assumed to be **multivariate normally distributed** (i.e., $u \sim MN(0, \Psi)$).

Between-person level model

Between level: fixed and random effects

$$\mu_{PA,i} = \gamma_P + u_{P,i}$$

$$\mu_{NA,i} = \gamma_N + u_{N,i}$$

$$\phi_{PP,i} = \gamma_{PP} + u_{PP,i}$$

$$\phi_{PN,i} = \gamma_{PN} + u_{PN,i}$$

$$\phi_{NP,i} = \gamma_{NP} + u_{NP,i}$$

The *u*'s are assumed to be multivariate normally distributed (i.e., $u \sim MN(0, \Psi)$). Parameters estimated at this level are:

- 6 fixed effects (i.e., γ 's)
- 6 variances for random effects (i.e., diagonal elements of Ψ: variances of the u's)
- 15 covariances between the random effects (i.e., off-diagonal elements in Ψ)

Data are in **long format** (i.e., each record is an occasion within a person; multiple records per person).

Lagged variables are **created in Mplus** (using the LAGGED command).

Data are in **long format** (i.e., each record is an occasion within a person; multiple records per person).

Lagged variables are **created in Mplus** (using the LAGGED command).

VARIABLE:	NAMES = id sessdate na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;
	CLUSTER = id; ! Specify the person id variable USEVAR = dayPA dayNA; ! Specify which variables are used in the model MISSING = ALL(-999); LAGGED = dayPA(1) dayNA(1); ! This creates lagged variables TINTERVAL = sessdate(1); ! This is to account for unequal intervals
ANALYSIS:	TYPE = TWOLEVEL RANDOM; ! This allows for random slopes ESTIMATOR = BAYES; ! DSEM requires Bayesian estimation PROC = 2; ! Using 2 processors makes it faster BITER = (5000); ! This implies at least 5000 iterations are used THIN = 10; ! Thinning helps with getting more stable results

120/149

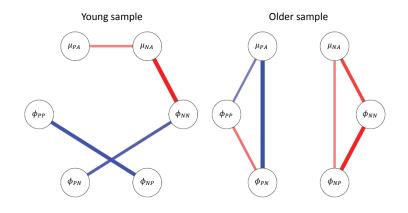
MODEL:	%WITHIN%! Specify the random lagged relationships p_pp dayPA ON dayPA&1; p_pn dayPA ON dayNA&1; p_np dayNA ON dayPA&1; p_nn dayNA ON dayNA&1;
	%BETWEEN%! Allow all 6 random effects to be correlated p_pp WITH p_pn-p_nn dayPA dayNA; p_pn WITH p_np-p_nn dayPA dayNA; p_np WITH p_nn dayPA dayNA; p_nn WITH dayPA dayNA; dayPA WITH dayNA;
OUTPUT:	TECH1 TECH8 STDYX;
PLOT:	TYPE = PLOT3; FACTORS = ALL;

Mplus results: Within-person (younger sample)

	Estimate	Posterior S.D.	On e- Tailed P- Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Within Level						
DAYNA WITH DAYPA	-0.069	0.004	0.000	-0.076	-0.061	*
Residual Varian	ces					
DAYPA	0.414	0.006	0.000	0.403	0.426	*
DAYNA	0.302	0.004	0.000	0.294	0.311	*

Mplus results: Between-person (younger sample)

		Posterior	On e- Tailed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Between Level						
Means						
DAYPA	3.090	0.110	0.000	2.875	3.308	*
DAYNA	0.977	0.077	0.000	0.826	1.128	*
P PP	0.334	0.026	0.000	0.283	0.387	*
P PN	0.050	0.022	0.016	0.006	0.093	*
P NP	0.038	0.015	0.006	0.008	0.068	*
P_NN	0.370	0.027	0.000	0.315	0.423	*
Variances						
DAYPA	1.178	0.189	0.000	0.886	1.618	*
DAYNA	0.595	0.101	0.000	0.443	0.832	*
P PP	0.055	0.010	0.000	0.039	0.079	*
P PN	0.024	0.006	0.000	0.014	0.039	*
P NP	0.013	0.003	0.000	0.008	0.021	*
P NN	0.062	0.012	0.000	0.044	0.089	*


Mplus standardized results (younger sample)

Within-Level R-Square Averaged Across Clusters

		Posterior	On e-Tailed	95%	C.I.
Variable	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%
DAYPA	0.184	0.008	0.000	0.168	0.201
DAYNA	0.208	0.008	0.000	0.192	0.225

Between-person level: Correlated random effects

To **represent the correlation matrices** of the 6 random effects in each group, we can use the network representation (with qgraph from Sacha Epskamp in R):

Applications Overview

- ▶ 1. Multilevel VAR model for PA and NA
- ► 2. Multilevel VAR model with mediation
- ▶ 3. Random (co)Variances and Measurement Error
- ▶ 4. Intervention Study

Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

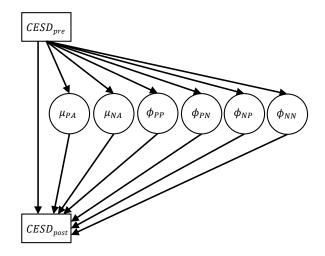
イロン イヨン イヨン トヨン

127 / 149

Between level: Including a level 2 predictor

$$\begin{split} \mu_{PA,i} &= \gamma_{00} + \gamma_{01} CESDpre_i + u_{0i} \\ \mu_{NA,i} &= \gamma_{10} + \gamma_{11} CESDpre_i + u_{1i} \\ \phi_{PP,i} &= \gamma_{20} + \gamma_{21} CESDpre_i + u_{2i} \\ \phi_{PN,i} &= \gamma_{30} + \gamma_{31} CESDpre_i + u_{3i} \\ \phi_{NN,i} &= \gamma_{40} + \gamma_{41} CESDpre_i + u_{4i} \\ \phi_{NP,i} &= \gamma_{50} + \gamma_{51} CESDpre_i + u_{5i} \end{split}$$

Including level 2 predictor and outcome


Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

Between level: Including a level 2 predictor

Between level: Including a level 2 outcome $CESDpost_i = \gamma_{60} + \gamma_{61}CESDpre_i + \gamma_{62}\mu_{PA,i} + \gamma_{63}\mu_{NA,i}$

 $+\gamma_{64}\phi_{PP,i}+\gamma_{65}\phi_{PN,i}+\gamma_{66}\phi_{NN,i}+\gamma_{67}\phi_{NP,i}+u_{6i}$

Dynamic mediation model

< □ > < @ > < 글 > < 글 > < 글 > 128 / 149

Mplus input mediation model

VARIABLE:	NAMES = id sessdate na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older; CLUSTER = id; USEVAR = dayPA dayNA CESDpre CESDpost; ! Plus level 2 variables BETWEEN = CESDpre CESDpost; ! Specify these as level 2 variables LAGGED = dayPA(1) dayNA(1); TINTERVAL = sessdate(1); MISSING = ALL(-999);
DEFINE:	CENTER CESDpre CESDpost (GRANDMEAN);! Grand mean centering
ANALYSIS:	TYPE = TWOLEVEL RANDOM; ESTIMATOR = BAYES; PROCESSORS = 2; BITER = (5000); THIN = 10;

MODEL:	%WITHIN% ! Same as before p_pp dayPA ON dayPA&1; p_pn dayPA ON dayNA&1; p_np dayNA ON dayPA&1; p_nn dayNA ON dayNA&1;
	%BETWEEN% ! Mediation model with parameter names p_pp-p_nn dayPA dayNA ON CESDpre (a1-a6); CESDpost ON p_pp-p_nn dayPA dayNA CESDpre (b1-b7);
MODEL CONSTRAINT:	<pre>! Compute the indirect effects new (ab _ p _ pp); ab _ p _ pp=a1*b1; new (ab _ p _ pn); ab _ p _ pn=a2*b2; new (ab _ p _ np); ab _ p _ np=a3*b3; new (ab _ p _ nn); ab _ p _ nn=a4*b4; new (ab _ dayPA); ab _ dayPA=a5*b5; new (ab _ dayNA); ab _ dayNA=a6*b6;</pre>
OUTPUT:	TECH1 TECH8 STDYX;
PLOT:	TYPE = PLOT3; FACTOR = ALL;

Mplus output mediation model (younger sample)

		Posterior	On e- Tailed	95%	6 C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
New/Additional	Parameters					
AB P PP	0.010	0.025	0.266	-0.028	0.076	
AB P PN	-0.002	0.032	0.439	-0.074	0.062	
AB P NP	-0.004	0.037	0.401	-0.089	0.067	
AB P NN	0.195	0.070	0.000	0.081	0.359	*
AB DAYPA	0.049	0.035	0.029	-0.001	0.135	
AB_DAYNA	0.028	0.043	0.234	-0.052	0.119	

Mplus output mediation model (older sample)

		Posterior	On e- Tail ed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
New/Additional	Parameters					
AB P PP	0.005	0.016	0.302	-0.018	0.049	
AB P PN	-0.004	0.025	0.396	-0.061	0.045	
AB P NP	0.012	0.027	0.268	-0.035	0.076	
AB P NN	-0.036	0.038	0.112	-0.130	0.025	
AB DAYPA	0.028	0.038	0.209	-0.042	0.110	
AB_DAYNA	0.027	0.036	0.194	-0.040	0.108	

Applications Overview

- ▶ 1. Multilevel VAR model for PA and NA
- > 2. Multilevel VAR model with mediation
- ▶ 3. Random (co)Variances and Measurement Error
- 4. Intervention Study

Applications Overview

- ▶ 1. Multilevel VAR model for PA and NA
- > 2. Multilevel VAR model with mediation
- ▶ 3. Random (co)Variances and Measurement Error
- 4. Intervention Study

Intervention study with ESM

When **ESM** is used in a **randomized controlled trial**, we can investigate whether treatment affects symptoms through changing:

- means
- dynamics (e.g., autoregression)
- variability

Intervention study with ESM

When **ESM** is used in a **randomized controlled trial**, we can investigate whether treatment affects symptoms through changing:

- means
- dynamics (e.g., autoregression)
- variability

Here we use negative affect (NA) from individuals with a **history of depression** and current residual depressive symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

We analyze data from 117 participants; 56 received a **mindfulness training** between the two phases, and 61 served as **controls**.

Data setup

Phase	Meas	Y
1	1	31
1	2	45
1	3	42
1	4	38
1	5	51
1	6	34
2	1	16
2	2	31
2	3	34
2	4	28
2	5	19
2	6	22

Data setup

Phase	Meas	Y
1	1	31
1	2	45
1	3	42
1	4	38
1	5	51
1	6	34
2	1	16
2	2	31
2	3	34
2	4	28
2	5	19
2	6	22

Phase	Meas	Y1	Y2
1	1	31	
1	2	45	
1	3	42	
1	4	38	
1	5	51	
1	6	34	
2	1		16
2	2		31
2	3		34
2	4		28
2	5		19
2	6		22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We use $NA1_{it}$ and $NA2_{it}$ as two separate variables!

We use $NA1_{it}$ and $NA2_{it}$ as two separate variables! Decomposition into a between part and a within part Pre-treatment phase: $NA1_{it} = \mu_{1i} + NA1_{it}^{(w)}$ Post-treatment phase: $NA2_{it} = \mu_{2i} + NA2_{it}^{(w)}$

We use $NA1_{it}$ and $NA2_{it}$ as two separate variables! Decomposition into a between part and a within part Pre-treatment phase: $NA1_{it} = \mu_{1i} + NA1_{it}^{(w)}$ Post-treatment phase: $NA2_{it} = \mu_{2i} + NA2_{it}^{(w)}$

Between level

 $\mu_{1i} = \gamma_{00} + \gamma_{01} Group_i + u_{1i}$ $\mu_{2i} = \gamma_{10} + \mu_{1i} + \gamma_{11} Group_i + u_{2i}$

- > γ_{01} is the initial difference between the groups
- > γ_{10} is the effect of time
- γ_{11} is the effect of treatment

We use $NA1_{it}$ and $NA2_{it}$ as two separate variables! Decomposition into a between part and a within part Pre-treatment phase: $NA1_{it} = \mu_{1i} + NA1_{it}^{(w)}$ Post-treatment phase: $NA2_{it} = \mu_{2i} + NA2_{it}^{(w)}$

Between level

$$\mu_{1i} = \gamma_{00} + \gamma_{01} Group_i + u_{1i} \mu_{2i} = \gamma_{10} + \mu_{1i} + \gamma_{11} Group_i + u_{2i}$$

> γ_{01} is the initial difference between the groups

- > γ_{10} is the effect of time
- \(\gamma_{11}\) is the effect of treatment

Note: $\mu_{2i} - \mu_{1i} = \gamma_{10} + \gamma_{11} Group_i + u_{2i}$.

Mplus input

MODEL: %WITHIN% NA1 WITH NA2@0;

> %BETWEEN% NA1 ON Group; NA2 ON NA1@1 Group; NA1 WITH NA2;

Note: When $NA1_{it}$ is observed, $NA2_{it}$ is missing, and vice versa; hence, we fix their within-person **covariance to zero**.

Mplus results: Within

	Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Within Level	Estimate	5.0.	i value	LOWCI 2.570	opper 2.570	Significance
NA1 WITH NA2	0.000	0.000	1.000	0.000	0.000	
Variances						
NA1	0.631	0.012	0.000	0.607	0.656	*
NA2	0.472	0.009	0.000	0.454	0.490	*

Mplus results: Between

	Posterior	On e- Tailed	95%	C.I.	
Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
-0.031	0.136	0.408	-0.304	0.234	
1.000	0.000	0.000	1.000	1.000	
-0.280	0.110	0.003	-0.500	-0.074	*
					*
					*
-0.027	0.076	0.345	-0.175	0.122	
0.520	0.074	0.000	0.398	0.683	*
0.316	0.049	0.000	0.237	0.431	*
	-0.031 1.000 -0.280 2.028 -0.027 0.520	Estimate S.D. -0.031 0.136 1.000 0.000 -0.280 0.110 2.028 0.093 -0.027 0.076 0.520 0.074	Estimate S.D. P-Value -0.031 0.136 0.408 1.000 0.000 0.000 -0.280 0.110 0.003 2.028 0.093 0.000 -0.027 0.076 0.345 0.520 0.074 0.000	Estimate S.D. P-Value Lower 2.5% -0.031 0.136 0.408 -0.304 1.000 0.000 0.000 1.000 -0.280 0.110 0.003 -0.500 2.028 0.093 0.000 1.849 -0.027 0.076 0.345 -0.175 0.520 0.074 0.000 0.398	Estimate S.D. P-Value Lower 2.5% Upper 2.5% -0.031 0.136 0.408 -0.304 0.234 1.000 0.000 0.000 1.000 1.000 -0.280 0.110 0.003 -0.500 -0.074 2.028 0.093 0.000 1.849 2.213 -0.027 0.076 0.345 -0.175 0.122 0.520 0.074 0.000 0.398 0.683

Conclusion:

- No initial differences between the groups
- Significant (negative) change in NA due to treatment
- No change due to time

Treatment and time effects on autoregression

Within level: AR(1) processes

Pre-treatment phase: $NA1_{it}^{(w)} = \phi_{1i}NA1_{it-1}^{(w)} + \zeta 1_{it}$ Post-treatment phase: $NA2_{it}^{(w)} = \phi_{2i}NA2_{it-1}^{(w)} + \zeta 2_{it}$ Treatment and time effects on autoregression

Within level: AR(1) processes

Pre-treatment phase: $NA1_{it}^{(w)} = \phi_{1i}NA1_{it-1}^{(w)} + \zeta 1_{it}$ Post-treatment phase: $NA2_{it}^{(w)} = \phi_{2i}NA2_{it-1}^{(w)} + \zeta 2_{it}$

Between level: Pre-treatment phase

 $\mu_{1i} = \gamma_{00} + \gamma_{01} \operatorname{Group}_i + u_{0i}$ $\phi_{1i} = \gamma_{10} + \gamma_{11} \operatorname{Group}_i + u_{1i}$

We expect γ_{01} and γ_{11} to be zero.

Treatment and time effects on autoregression

Within level: AR(1) processes

Pre-treatment phase: $NA1_{it}^{(w)} = \phi_{1i}NA1_{it-1}^{(w)} + \zeta 1_{it}$ Post-treatment phase: $NA2_{it}^{(w)} = \phi_{2i}NA2_{it-1}^{(w)} + \zeta 2_{it}$

Between level: Pre-treatment phase

We expect γ_{01} and γ_{11} to be zero.

Between level: Post-treatment phase

Where: γ_{20} and γ_{30} represent the effects of time and: γ_{21} and γ_{31} represent the effects of treatment

Mplus results (all effects random)

		Posterior	On e-Tailed	95%		
Between Level	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
PHI2 ON PHI1	1.000	0.000	0.000	1.000	1.000	
PHI1 ON GROUP	0.052	0.047	0.130	-0.039	0.142	
PHI2 ON GROUP	-0.077	0.066	0.119	-0.209	0.057	
NA1 ON GROUP	-0.079	0.134	0.284	-0.340	0.183	
NA2 ON						
NA1	1.000	0.000	0.000	1.000	1.000	*
GROUP	-0.246	0.105	0.010	-0.457	-0.038	
Intercepts						
NA1	2.008	0.092	0.000	1.831	2.190	*
NA2	-0.005	0.071	0.470	-0.148	0.136	*
PHI1 PHI2	0.454 -0.092	0.034 0.047	0.000 0.022	0.390 -0.185	0.522 -0.004	*
1 1112	0.052	0.017	0.022	0.100	0.001	

Mplus results with: phi2@0;

		Posterior	On e-Tailed	95%			
Between Level	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance	
PHI2 ON							
PHI1	1.000	0.000	0.000	1.000	1.000		
PHI1 ON							
GROUP	0.075	0.049	0.053	-0.014	0.174		
PHI2 ON							
GROUP	-0.070	0.033	0.014	-0.137	-0.005	*	
NA1 ON							
GROUP	-0.071	0.132	0.302	-0.327	0.192		
NA2 ON							
NA1	1.000	0.000	0.000	1.000	1.000		
GROUP	-0.247	0.105	0.010	-0.454	-0.043	*	
Intercepts							
NA1	2.012	0.090	0.000	1.837	2.194	*	
NA2	-0.010	0.071	0.442	-0.152	0.133		
PHI1	0.425	0.034	0.000	0.356	0.491	*	
PHI2	-0.019	0.022	0.199	-0.062	0.026		

Now: No effect of time on the change in ϕ , but instead a treatment $\int_{143}^{29\%}$

Let $UP1_{it}$ and $UP2_{it}$ be variables for phases 1 and 2, that indicate whether something emotionally charged happened **since the previous beep** (positive scores is Pleasant event, negative score is Unpleasant event).

Let $UP1_{it}$ and $UP2_{it}$ be variables for phases 1 and 2, that indicate whether something emotionally charged happened since the previous beep (positive scores is Pleasant event, negative score is Unpleasant event).

Within level

Pre-treatment phase: $NA1_{it}^{(w)} = \phi_{1i}NA1_{it-1}^{(w)} + \beta_{1i}UP1_{it}^{(w)} + \zeta_{1it}$ Post-treatment phase: $NA2_{it}^{(w)} = \phi_{2i}NA2_{it-1}^{(w)} + \beta_{2i}UP2_{it}^{(w)} + \zeta_{2it}$ where:

- ϕ_{1i} and ϕ_{2i} represent carry-over
- β_{1i} and β_{2i} represent reactivity/sensitivity

Let $UP1_{it}$ and $UP2_{it}$ be variables for phases 1 and 2, that indicate whether something emotionally charged happened since the previous beep (positive scores is Pleasant event, negative score is Unpleasant event).

Within level

Pre-treatment phase: $NA1_{it}^{(w)} = \phi_{1i}NA1_{it-1}^{(w)} + \beta_{1i}UP1_{it}^{(w)} + \zeta_{1it}$ Post-treatment phase: $NA2_{it}^{(w)} = \phi_{2i}NA2_{it-1}^{(w)} + \beta_{2i}UP2_{it}^{(w)} + \zeta_{2it}$ where:

- ϕ_{1i} and ϕ_{2i} represent carry-over
- ▶ β_{1i} and β_{2i} represent reactivity/sensitivity

Note that we have **concurrent regressions** in this model (i.e., β_{1i} and β_{2i}).

Group is a predictor at the between level:

Between level: Pre-treatment phase

$$\mu_{1i} = \gamma_{00} + \gamma_{01} Group_i + u_{0i} \phi_{1i} = \gamma_{10} + \gamma_{11} Group_i + u_{1i} \beta_{1i} = \gamma_{20} + \gamma_{21} Group_i + u_{2i}$$

where γ_{01} , γ_{11} , and γ_{21} are expected to be zero.

Group is a predictor at the between level:

Between level: Pre-treatment phase

where γ_{01} , γ_{11} , and γ_{21} are expected to be zero.

The change in mean, carry-over, and reactivity is modeled as: Between level: Post-treatment phase

$$\begin{split} \mu_{2i} &= \gamma_{30} + \mu_{1i} + \gamma_{31} \operatorname{Group}_i + u_{3i} \quad \text{or:} \\ \Delta \mu_i &= \gamma_{30} + \gamma_{31} \operatorname{Group}_i + u_{3i} \\ \phi_{2i} &= \gamma_{40} + \phi_{1i} + \gamma_{41} \operatorname{Group}_i + u_{4i} \quad \text{or:} \\ \Delta \phi_i &= \gamma_{40} + \gamma_{41} \operatorname{Group}_i + u_{4i} \\ \beta_{2i} &= \gamma_{50} + \beta_{1i} + \gamma_{51} \operatorname{Group}_i + u_{5i} \quad \text{or:} \\ \Delta \beta_i &= \gamma_{50} + \gamma_{51} \operatorname{Group}_i + u_{5i} \end{split}$$

where

> γ_{30} , γ_{40} , and γ_{50} represent change due to time

145 / 149

Mplus input: Centering within predictors

VARIABLE:	$\begin{split} \text{NAMES} &= \text{ID Time PrePost Group pal pal nal nal } \\ \text{PDLA1 PDLA2 up1 up2 ham1 ham2;} \\ \text{CLUSTER} &= \text{ID;} \\ \text{USEVAR} &= \text{nal nal up1 up2 Group;} \\ \text{LAGGED} &= \text{nal(1) nal(1);} \\ \text{BETWEEN} &= \text{Group;} \\ \text{WITHIN} &= \text{up1 up2;} \\ \text{TINTERVAL} &= \text{Time(1);} \\ \text{MISSING} &= \text{ALL(-999);} \end{split}$
DEFINE:	CENTER up1 up2 (GROUPMEAN);

Note that the concurrent predictors UP1 and UP2 are:

- defined as within-level variables
- centered per person (i.e., group mean centering using sample means rather than latent means)

This is to allow for lag zero (concurrent) regressions when the predictor has missings.

Mplus input: Within and between model

Note: The within-person predictor has missings; by asking for the variances, Mplus treats it as a y-variable, which is allowed to have missings.

MODEL:	
	%WITHIN%
	phi1 na1 ON na1&1;
	beta1 na1 ON up1;
	phi2 na2 ON na2&1;
	beta2 na2 ON up2;
	na1-up1 WITH na2-up2@0; up1; up2;
	%BETWEEN%
	nal phil betal ON Group;
	na2 ON na1@1 Group;
	phi2 ON phi1@1 Group;
	beta2 ON beta1@1 Group;

Mplus output: Regressions at Between level

		Posterior	One-Tailed		95% C.I.		
Between Level	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance	
PHI2 ON PHI1	1.000	0.000	0.000	1.000	1.000		
BETA2 ON BETA1	1.000	0.000	0.000	1.000	1.000		
PHI1 ON GROUP	0.050	0.046	0.119	-0.035	0.144		
BETA1 ON GROUP	0.001	0.019	0.470	-0.034	0.041		
PHI2 ON GROUP	-0.077	0.068	0.123	-0.214	0.053		
BETA2 ON GROUP	-0.016	0.026	0.264	-0.069	0.032		
NA1 ON GROUP	-0.070	0.134	0.297	-0.340	0.180		
NA2 ON							
NA1 GROUP	1.000 -0.255	0.000 0.105	0.000 0.007	1.000 -0.463	1.000 -0.059	* (≧) (≧)	

148 / 149

Mplus output: Intercepts and random effects

		Posterior	On e- Tail ed	95% C.I.		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Between Level						
Intercepts						
NA1	2.012	0.091	0.000	1.835	2.189	*
NA2	-0.014	0.071	0.422	-0.155	0.126	
PHI1	0.423	0.033	0.000	0.357	0.487	*
BETA1	-0.123	0.013	0.000	-0.150	-0.097	*
PHI2	-0.082	0.047	0.039	-0.173	0.011	
BETA2	0.005	0.018	0.388	-0.027	0.041	
Residual Variances						
NA1	0.466	0.070	0.000	0.355	0.632	*
NA2	0.268	0.042	0.000	0.199	0.359	*
PHI1	0.038	0.008	0.000	0.026	0.056	*
BETA1	0.006	0.001	0.000	0.004	0.009	*
PHI2	0.078	0.016	0.000	0.051	0.114	*
BETA2	0.008	0.003	0.000	0.005	0.015	*

Conclusion:

- means of μ_{1i} , ϕ_{1i} , and β_{1i} deviate from zero
- ▶ no change due to time (intercepts for μ_{2i} , ϕ_{2i} , and β_{2i} are zero)

Mplus output: Standardized regressions

	Estimate	Posterior S.D.	On e- Tailed P- Value		C.I. Upper 2.5%	Significance
Within-Level Stan	dardized E	stimates A	Averaged Ov	er Clusters		
PHI1 NA1 ON NA1&1	0.449	0.014	0.000	0.419	0.475	*
BETA1 NA1 ON UP1	-0.254	0.013	0.000	-0.279	-0.229	*
PHI2 NA2 ON NA2&1	0.328	0.016	0.000	0.297	0.358	*
BETA2 NA2 ON UP2	-0.259	0.015	0.000	-0.287	-0.230	*

Conclusion:

- the standardized parameters are standardized per person first
- ► the standardized parameters for the post treatment phase are for the "total" parameter (e.g., $\phi_{2i} = \gamma_{40} + \phi_{1i} + \gamma_{41} Group_i + u_{4i}$)